ST/ Stellar winds of three sun-like stars detected for the first time

Paradigm
Paradigm
Published in
37 min readMay 2, 2024

--

Space biweekly vol.96, 16th April — 2nd May

TL;DR

  • Stellar winds from three Sun-like stars detected directly for the first time through X-ray emission from their astrospheres, shedding light on mass loss rates.
  • Importance of considering a star’s magnetic field highlighted for accurate exoplanet characterization via space telescopes like Kepler, James Webb, or PLATO.
  • Brightest gamma-ray burst (GRB) accompanied by a ‘normal’ supernova, yet lacking signatures of heavy elements, deepening their mystery.
  • Surprising discovery in HD 148937 reveals a younger, magnetic star alongside its counterpart, suggesting a violent merger of originally three stars.
  • Physicists resolve a puzzle linked to the ancient massive galaxy JWST-ER1g, formed when the universe was much younger.
  • Relationship between the Milky Way and the Egyptian sky-goddess Nut explored, suggesting the Milky Way may have emphasized Nut’s role in ancient mythology.
  • Reactivation of a magnetar unveils a complex environment through cutting-edge radio telescope technology.
  • Previously quiet black hole suddenly erupts, emitting plumes of gas every 8.5 days before returning to its tranquil state.
  • Possibility of life in frozen sea spray from moons orbiting Saturn or Jupiter explored, with research indicating detectability of life in ice grains.
  • New image from the Event Horizon Telescope reveals organized magnetic fields spiraling from Sagittarius A*, similar to those observed in the center of the M87 galaxy, hinting at common magnetic field structures in black holes.
  • And more!

Space industry in numbers

The global smart space market size is projected to grow from USD 9.4 billion in 2020 to USD 15.3 billion by 2025, at a Compound Annual Growth Rate (CAGR) of 10.2% during the forecast period. The increasing venture capital funding and growing investments in smart space technology to drive market growth.

Analysts at Morgan Stanley and Goldman Sachs have predicted that economic activity in space will become a multi-trillion-dollar market in the coming decades. Morgan Stanley’s Space Team estimates that the roughly USD 350 billion global space industry could surge to over USD 1 trillion by 2040.

Source: Satellite Industry Association, Morgan Stanley Research, Thomson Reuters. *2040 estimates

Space industry news

Latest research

X-ray detection of astrospheres around three main-sequence stars and their mass-loss rates

by K. G. Kislyakova, M. Güdel, D. Koutroumpa, J. A. Carter, C. M. Lisse, S. Boro Saikia in Nature Astronomy

An international research team led by a researcher from the University of Vienna has for the first time directly detected stellar winds from three Sun-like stars by recording the X-ray emission from their astrospheres, and placed constraints on the mass loss rate of the stars via their stellar winds.

Astrospheres, stellar analogues of the heliosphere that surrounds our solar system, are very hot plasma bubbles blown by stellar winds into the interstellar medium, a space filled with gas and dust. The study of the stellar winds of low-mass stars similar to the Sun allows us to understand stellar and planetary evolution, and ultimately the history and future of our own star and solar system. Stellar winds drive many processes that evaporate planetary atmospheres into space and therefore lead to atmospheric mass loss.

Although escape rates of planets over an hour or even a year are tiny, they operate over long geological periods. The losses accumulate and can be a decisive factor for a planet evolving into a habitable world or an airless rock. Despite their importance for the evolution of both stars and planets, winds of Sun-like stars are notoriously difficult to constrain. Mainly composed of protons and electrons, they also contain a small quantity of heavier highly charged ions (e.g. oxygen, carbon). It is these ions which, by capturing electrons from the neutrals of the interstellar medium around the star, emit X-rays.

Infrared image of the shockwave (red arc) created by the massive giant star Zeta Ophiuchi in an interstellar dust cloud. The tenuous winds of sun-like main-sequence stars are much more difficult to observe C: NASA/JPL-Caltech; NASA and The Hubble Heritage Team (STScI/AURA); C. R. O’Dell, Vanderbilt University

An international research team led by Kristina Kislyakova, Senior Scientist at the Department of Astrophysics of the University of Vienna, has detected for the first time the X-ray emission from the astrospheres around three sun-like stars, so called main sequence stars which are stars in the prime of their life, and has thus recorded such winds for the first time directly, allowing them to place constraints on the mass loss rate of the stars via their stellar winds.

These results, based on observations with the XMM-Newton space telescope, are currently published. The researchers observed the spectral fingerprints (so-called spectral lines) of the oxygen ions with XMM-Newton and were able to determine the quantity of oxygen and ultimately the total mass of stellar wind emitted by the stars. For the three stars with detected astrospheres, named 70 Ophiuchi, epsilon Eridani, and 61 Cygni, the researchers estimated their mass loss rates to be 66.5±11.1, 15.6±4.4, and 9.6±4.1 times the solar mass loss rate, respectively. This means that the winds from these stars are much stronger than the solar wind, which might be explained by stronger magnetic activity of these stars.

XMM-Newton X-ray image of the star 70 Ophiuchi (left) and the X-ray emission from the region (“Annulus”) surrounding the star represented in a spectrum over the energy of the X-ray photons (right). Most of the emission consists of X-ray photons from the star itself but scattered within the observing telescope and across the camera.

“In the solar system, solar wind charge exchange emission has been observed from planets, comets, and the heliosphere and provides a natural laboratory to study the solar wind’s composition,” explains the lead author of the study, Kristina Kislyakova. “Observing this emission from distant stars is much more tricky due to the faintness of the signal. In addition to that, the distance to the stars makes it very difficult to disentangle the signal emitted by the astrosphere from the actual X-ray emission of the star itself, part of which is “spread” over the field-of-view of the telescope due to instrumental effects. We have developed a new algorithm to disentangle the stellar and the astrospheric contributions to the emission and detected charge exchange signals originating from stellar wind oxygen ions and the surrounding neutral interstellar medium of three main-sequence stars. This has been the first time X-ray charge exchange emission from astrospheres of such stars has been detected. Our estimated mass loss rates can be used as a benchmark for stellar wind models and expand our limited observational evidence for the winds of Sun-like stars.”

Co-author Manuel Güdel, also of the University of Vienna, adds, “there have been world-wide efforts over three decades to substantiate the presence of winds around Sun-like stars and measure their strengths, but so far only indirect evidence based on their secondary effects on the star or its environment alluded to the existence of such winds; our group previously tried to detect radio emission from the winds but could only place upper limits to the wind strengths while not detecting the winds themselves. Our new X-ray based results pave the way to finding and even imaging these winds directly and studying their interactions with surrounding planets.”

“In the future, this method of direct detection of stellar winds in X-rays will be facilitated thanks to future high resolution instruments, like the X-IFU spectrometer of the European Athena mission. The high spectral resolution of X-IFU will resolve the finer structure and emission ratio of the oxygen lines (as well as other fainter lines), that are hard to distinguish with XMM’s CCD resolution, and provide additional constraints on the emission mechanism; thermal emission from the stars, or non-thermal charge exchange from the astrospheres.” — explains CNRS researcher Dimitra Koutroumpa, a co-author of the study.

Magnetic origin of the discrepancy between stellar limb-darkening models and observations

by Nadiia M. Kostogryz, Alexander I. Shapiro, Veronika Witzke, Robert H. Cameron, Laurent Gizon, Natalie A. Krivova, Hans-G. Ludwig, Pierre F. L. Maxted, Sara Seager, Sami K. Solanki, Jeff Valenti in Nature Astronomy

A star’s magnetic field must be considered in order to correctly determine the characteristics of their exoplanets from observations by space telescopes such as Kepler, James Webb, or PLATO. This is demonstrated by new model calculations presented by a research group led by the Max Planck Institute for Solar System Research (MPS) in Germany. The researchers show that the distribution of the star’s brightness over its disk depends on the star’s level of magnetic activity. This, in turn, affects the signature of an exoplanet in observational data. The new model must be used in order to properly interpret the data from the latest generation of space telescopes pointed at distant worlds outside our Solar System.

700 light years away from Earth in the constellation Virgo, the planet WASP-39b orbits the star WASP-39. The gas giant, which takes little more than four days to complete one orbit, is one of the best-studied exoplanets: Shortly after its commissioning in July 2022, NASA’s James Webb Space Telescope turned its high-precision gaze on the distant planet. The data revealed evidence of large quantities of water vapor, of methane and even, for the first time, of carbon dioxide in the atmosphere of WASP-39b. A minor sensation! But there is still one fly in the ointment: researchers have not yet succeeded in reproducing all the crucial details of the observations in model calculations. This stands in the way of an even more precise analyses of the data. In the new study led by the MPS, the authors, including researchers from the Massachusetts Institute of Technology (USA), the Space Telescope Science Institute (USA), Keele University (United Kingdom), and the University of Heidelberg (Germany), show a way to overcome this obstacle.

“The problems arising when interpreting the data from WASP-39b are well known from many other exoplanets — regardless whether they are observed with Kepler, TESS, James Webb, or the future PLATO spacecraft,” explains MPS scientist Dr. Nadiia Kostogryz, first author of the new study. “As with other stars orbited by exoplanets, the observed light curve of WASP-39 is flatter than previous models can explain,” she adds.

Stars with low magnetic field strength exhibit a more pronounced limb darkening than those with a strong magnetic field. This affects the shape of the light curve.

Researchers define a light curve as a measurement of the brightness of a star over a longer period of time. The brightness of a star fluctuates constantly, for example because its luminosity is subject to natural fluctuations. Exoplanets can also leave traces in the light curve. If an exoplanet passes in front of its star as seen by an observer, it dims the starlight. This is reflected in the light curve as a regularly recurring drop in brightness. Precise evaluations of such curves provide information about the size and orbital period of the planet. Researchers can also obtain information about the composition of the planet’s atmosphere, if the light from the star is split into its different wavelengths or colours.

The limb of a star, the edge of the stellar disk, plays a decisive role in the interpretation of its light curve. Just as in the case of the Sun, the limb appears darker to the observer than the inner area. However, the star does not actually shine less brightly further out. “As the star is a sphere and its surface curved, we look into higher and therefore cooler layers at the limb than in the center,” explains coauthor and MPS-Director Prof. Dr. Laurent Gizon. “This area therefore appears darker to us,” he adds.

It is known that the limb darkening affects the exact shape of the exoplanet signal in the light curve: The dimming determines how steeply the brightness of a star falls during a planetary transit and then rises again. However, it has not been possible to reproduce observational data accurately using conventional models of the stellar atmosphere. The decrease of brightness was always less abrupt than the model calculations suggested. “It was clear that we were missing a crucial piece of the puzzle to precisely understand the exoplanets’ signal,” says MPS-Director Prof. Dr. Sami Solanki, coauthor of the current study.

As the calculations published today show, the missing piece of the puzzle is the stellar magnetic field. Like the Sun, many stars generate a magnetic field deep in their interior through enormous flows of hot plasma. For the first time, the researchers were now able to include the magnetic field in their models of limb darkening. They could show that the strength of the magnetic field has an important effect: The limb darkening is pronounced in stars with a weak magnetic field, while it is weaker in those with a strong magnetic field.

The researchers were also able to prove that the discrepancy between observational data and model calculations disappears if the star’s magnetic field is included in the computations. To this end, the team turned to selected data from NASA’s Kepler Space Telescope, which captured the light of thousands and thousands of stars from 2009 to 2018. In a first step, the scientists modeled the atmosphere of typical Kepler stars in the presence of a magnetic field. In a second step, they then generated “artificial” observational data from these calculations. As a comparison with the real data showed, by including the magnetic field, the Kepler data is successfully reproduced.

The team also extended its considerations to data from the James Webb Space Telescope. The telescope is able to split the light of distant stars into its various wavelengths and thus search for the characteristic signs of certain molecules in the atmosphere of the discovered planets. As it turns out, the magnetic field of the parent star influences the stellar limb darkening differently at different wavelengths — and should therefore be taken into account in future evaluations in order to achieve even more precise results.

“In the past decades and years, the way to move forward in exoplanet research was to improve the hardware, the space telescopes designed to search for and characterize new worlds. The James Webb Space Telescope has pushed this development to new limits,” says Dr. Alexander Shapiro, coauthor of the current study and head of an ERC-funded research group at the MPS. “The next step is now to improve and refine the models to interpret this excellent data,” he adds.

To further advance this development, the researchers now want to extend their analyses to stars that are clearly different from the Sun. In addition, their findings offer the possibility of using the light curves of stars with exoplanets to infer the strength of the stellar magnetic field, which is otherwise often hard to measure.

JWST detection of a supernova associated with GRB 221009A without an r-process signature

by Peter K. Blanchard, V. Ashley Villar, Ryan Chornock, et al in Nature Astronomy

In October 2022, an international team of researchers, including Northwestern University astrophysicists, observed the brightest gamma-ray burst (GRB) ever recorded, GRB 221009A. Now, a Northwestern-led team has confirmed that the phenomenon responsible for the historic burst — dubbed the B.O.A.T. (“brightest of all time”) — is the collapse and subsequent explosion of a massive star. The team discovered the explosion, or supernova, using NASA’s James Webb Space Telescope (JWST). While this discovery solves one mystery, another mystery deepens.

The researchers speculated that evidence of heavy elements, such as platinum and gold, might reside within the newly uncovered supernova. The extensive search, however, did not find the signature that accompanies such elements. The origin of heavy elements in the universe continues to remain as one of astronomy’s biggest open questions.

“When we confirmed that the GRB was generated by the collapse of a massive star, that gave us the opportunity to test a hypothesis for how some of the heaviest elements in the universe are formed,” said Northwestern’s Peter Blanchard, who led the study. “We did not see signatures of these heavy elements, suggesting that extremely energetic GRBs like the B.O.A.T. do not produce these elements. That doesn’t mean that all GRBs do not produce them, but it’s a key piece of information as we continue to understand where these heavy elements come from. Future observations with JWST will determine if the B.O.A.T.’s ‘normal’ cousins produce these elements.”

Blanchard is a postdoctoral fellow at Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), where he studies superluminous supernovae and GRBs. The study includes co-authors from the Center for Astrophysics Harvard & Smithsonian; University of Utah; Penn State; University of California, Berkeley; Radbound University in the Netherlands; Space Telescope Science Institute; University of Arizona/Steward Observatory; University of California, Santa Barbara; Columbia University; Flatiron Institute; University of Greifswald and the University of Guelph.

Artist’s visualization of GRB 221009A showing the narrow relativistic jets (emerging from a central black hole) that gave rise to the gamma-ray burst and the expanding remains of the original star ejected via the supernova explosion. Image by Aaron M. Geller / Northwestern / CIERA / IT Research Computing and Data Services.

When its light washed over Earth on Oct. 9, 2022, the B.O.A.T. was so bright that it saturated most of the world’s gamma-ray detectors. The powerful explosion occurred approximately 2.4 billion light-years away from Earth, in the direction of the constellation Sagitta and lasted a few hundred seconds in duration. As astronomers scrambled to observe the origin of this incredibly bright phenomenon, they were immediately hit with a sense of awe.

“As long as we have been able to detect GRBs, there is no question that this GRB is the brightest we have ever witnessed by a factor of 10 or more,” Wen-fai Fong, an associate professor of physics and astronomy at Northwestern’s Weinberg College of Arts and Sciences and member of CIERA, said at the time.

“The event produced some of the highest-energy photons ever recorded by satellites designed to detect gamma rays,” Blanchard said. “This was an event that Earth sees only once every 10,000 years. We are fortunate to live in a time when we have the technology to detect these bursts happening across the universe. It’s so exciting to observe such a rare astronomical phenomenon as the B.O.A.T. and work to understand the physics behind this exceptional event.”

JWST/NIRCam imaging.

Rather than observe the event immediately, Blanchard, his close collaborator Ashley Villar of Harvard University and their team wanted to view the GRB during its later phases. About six months after the GRB was initially detected, Blanchard used the JWST to examine its aftermath.

“The GRB was so bright that it obscured any potential supernova signature in the first weeks and months after the burst,” Blanchard said. “At these times, the so-called afterglow of the GRB was like the headlights of a car coming straight at you, preventing you from seeing the car itself. So, we had to wait for it to fade significantly to give us a chance of seeing the supernova.”

Blanchard used the JWST’s Near Infrared Spectrograph to observe the object’s light at infrared wavelengths. That’s when he saw the characteristic signature of elements like calcium and oxygen typically found within a supernova. Surprisingly, it wasn’t exceptionally bright — like the incredibly bright GRB that it accompanied.

“It’s not any brighter than previous supernovae,” Blanchard said. “It looks fairly normal in the context of other supernovae associated with less energetic GRBs. You might expect that the same collapsing star producing a very energetic and bright GRB would also produce a very energetic and bright supernova. But it turns out that’s not the case. We have this extremely luminous GRB, but a normal supernova.”

After confirming — for the first time — the presence of the supernova, Blanchard and his collaborators then searched for evidence of heavy elements within it. Currently, astrophysicists have an incomplete picture of all the mechanisms in the universe that can produce elements heavier than iron.

The primary mechanism for producing heavy elements, the rapid neutron capture process, requires a high concentration of neutrons. So far, astrophysicists have only confirmed the production of heavy elements via this process in the merger of two neutron stars, a collision detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) in 2017. But scientists say there must be other ways to produce these elusive materials. There are simply too many heavy elements in the universe and too few neutron-star mergers.

“There is likely another source,” Blanchard said. “It takes a very long time for binary neutron stars to merge. Two stars in a binary system first have to explode to leave behind neutron stars. Then, it can take billions and billions of years for the two neutron stars to slowly get closer and closer and finally merge. But observations of very old stars indicate that parts of the universe were enriched with heavy metals before most binary neutron stars would have had time to merge. That’s pointing us to an alternative channel.”

Astrophysicists have hypothesized that heavy elements also might be produced by the collapse of a rapidly spinning, massive star — the exact type of star that generated the B.O.A.T. Using the infrared spectrum obtained by the JWST, Blanchard studied the inner layers of the supernova, where the heavy elements should be formed.

“The exploded material of the star is opaque at early times, so you can only see the outer layers,” Blanchard said. “But once it expands and cools, it becomes transparent. Then you can see the photons coming from the inner layer of the supernova.”

“Moreover, different elements absorb and emit photons at different wavelengths, depending on their atomic structure, giving each element a unique spectral signature,” Blanchard explained. “Therefore, looking at an object’s spectrum can tell us what elements are present. Upon examining the B.O.A.T.’s spectrum, we did not see any signature of heavy elements, suggesting extreme events like GRB 221009A are not primary sources. This is crucial information as we continue to try to pin down where the heaviest elements are formed.”

To tease apart the light of the supernova from that of the bright afterglow that came before it, the researchers paired the JWST data with observations from the Atacama Large Millimeter/Submillimeter Array (ALMA) in Chile.

“Even several months after the burst was discovered, the afterglow was bright enough to contribute a lot of light in the JWST spectra,” said Tanmoy Laskar, an assistant professor of physics and astronomy at the University of Utah and a co-author on the study. “Combining data from the two telescopes helped us measure exactly how bright the afterglow was at the time of our JWST observations and allow us to carefully extract the spectrum of the supernova.”

Although astrophysicists have yet to uncover how a “normal” supernova and a record-breaking GRB were produced by the same collapsed star, Laskar said it might be related to the shape and structure of the relativistic jets. When rapidly spinning, massive stars collapse into black holes, they produce jets of material that launch at rates close to the speed of light. If these jets are narrow, they produce a more focused — and brighter — beam of light.

“It’s like focusing a flashlight’s beam into a narrow column, as opposed to a broad beam that washes across a whole wall,” Laskar said. “In fact, this was one of the narrowest jets seen for a gamma-ray burst so far, which gives us a hint as to why the afterglow appeared as bright as it did. There may be other factors responsible as well, a question that researchers will be studying for years to come.”

A magnetic massive star has experienced a stellar merger

by A. J. Frost, H. Sana, L. Mahy, G. Wade, J. Barron, J.-B. Le Bouquin, A. Mérand, F. R. N. Schneider, T. Shenar, R. H. Barbá, D. M. Bowman, M. Fabry, A. Farhang, P. Marchant, N. I. Morrell, J. V. Smoker in Science

When astronomers looked at a stellar pair at the heart of a stunning cloud of gas and dust, they were in for a surprise. Star pairs are typically very similar, like twins, but in HD 148937, one star appears younger and, unlike the other, is magnetic. New data from the European Southern Observatory (ESO) suggest there were originally three stars in the system, until two of them clashed and merged. This violent event created the surrounding cloud and forever altered the system’s fate.

“When doing background reading, I was struck by how special this system seemed,” says Abigail Frost, an astronomer at ESO in Chile and lead author of the study. The system, HD 148937, is located about 3800 light-years away from Earth in the direction of the Norma constellation. It is made up of two stars much more massive than the Sun and surrounded by a beautiful nebula, a cloud of gas and dust. “A nebula surrounding two massive stars is a rarity, and it really made us feel like something cool had to have happened in this system. When looking at the data, the coolness only increased.”

“After a detailed analysis, we could determine that the more massive star appears much younger than its companion, which doesn’t make any sense since they should have formed at the same time!” Frost says. The age difference — one star appears to be at least 1.5 million years younger than the other — suggests something must have rejuvenated the more massive star.

Another piece of the puzzle is the nebula surrounding the stars, known as NGC 6164/6165. It is 7500 years old, hundreds of times younger than both stars. The nebula also shows very high amounts of nitrogen, carbon and oxygen. This is surprising as these elements are normally expected deep inside a star, not outside; it is as if some violent event had set them free.

The nebula (NGC 6164/6165) surrounding HD 148937 as seen in visible light .

To unravel the mystery, the team assembled nine years’ worth of data from the PIONIER and GRAVITY instruments, both on ESO’s Very Large Telescope Interferometer (VLTI), located in Chile’s Atacama Desert. They also used archival data from the FEROS instrument at ESO’s La Silla Observatory.

“We think this system had at least three stars originally; two of them had to be close together at one point in the orbit whilst another star was much more distant,” explains Hugues Sana, a professor at KU Leuven in Belgium and the principal investigator of the observations. “The two inner stars merged in a violent manner, creating a magnetic star and throwing out some material, which created the nebula. The more distant star formed a new orbit with the newly merged, now-magnetic star, creating the binary we see today at the centre of the nebula.”

“The merger scenario was already in my head back in 2017 when I studied nebula observations obtained with the European Space Agency’s Herschel Space Telescope,” adds co-author Laurent Mahy, currently a senior researcher at the Royal Observatory of Belgium. “Finding an age discrepancy between the stars suggests that this scenario is the most plausible one and it was only possible to show it with the new ESO data.”

This scenario also explains why one of the stars in the system is magnetic and the other is not — another peculiar feature of HD 148937 spotted in the VLTI data.

At the same time, it helps solve a long-standing mystery in astronomy: how massive stars get their magnetic fields. While magnetic fields are a common feature of low-mass stars like our Sun, more massive stars cannot sustain magnetic fields in the same way. Yet some massive stars are indeed magnetic.

Astronomers had suspected for some time that massive stars could acquire magnetic fields when two stars merge. But this is the first time researchers find such direct evidence of this happening. In the case of HD 148937, the merger must have happened recently. “Magnetism in massive stars isn’t expected to last very long compared to the lifetime of the star, so it seems we have observed this rare event very soon after it happened,” Frost adds.

Cold Dark Matter and Self-interacting Dark Matter Interpretations of the Strong Gravitational Lensing Object JWST-ER1

by Demao Kong, Daneng Yang, Hai-Bo Yu in The Astrophysical Journal Letters

Last September, the James Webb Space Telescope, or JWST, discovered JWST-ER1g, a massive ancient galaxy that formed when the universe was just a quarter of its current age. Surprisingly, an Einstein ring is associated with this galaxy. That’s because JWST-ER1g acts as a lens and bends light from a distant source, which then appears as a ring — a phenomenon called strong gravitational lensing, predicted in Einstein’s theory of general relativity.

The total mass enclosed within the Einstein radius — the radius of the Einstein ring — has two components: stellar and dark matter components.

“If we subtract the stellar mass from the total mass, we get the dark matter mass within the Einstein radius,” said Hai-Bo Yu, a professor of physics and astronomy at the University of California, Riverside, whose team has published new work about JWST-ER1g. “But the value for the dark matter mass seems higher than expected. This is puzzling. In our paper, we offer an explanation.”

JWST-ER1g: the projected halo mass profile of the contracted CDM halo (solid black), the initial NFW halo (dashed black), and the SIDM halos with σ/m = 0.1 cm2 g−1 (solid magenta) and 0.3 cm2 g−1 (solid orange).

A dark matter halo is the halo of invisible matter that permeates and surrounds a galaxy like JWST-ER1g. Although dark matter has never been detected in laboratories, physicists are confident dark matter, which makes up 85% of the universe’s matter, exists.

“When ordinary matter — pristine gas and stars — collapses and condenses into the dark matter halo of JWST-ER1g, it may be compressing the halo, leading to a high density,” said Demao Kong, a second-year graduate student at UCR, who led the analysis. “Our numerical studies show that this mechanism can explain the high dark matter density of JWST-ER1g — more dark matter mass in the same volume, resulting in higher density.”

According to Daneng Yang, a postdoctoral researcher at UCR and co-author on the paper, JWST-ER1g, formed 3.4 billion years after the Big Bang, provides “a great chance to learn about dark matter.”

“This strong lensing object is unique because it has a perfect Einstein ring, from which we can obtain valuable information about the total mass within the Einstein radius, a critical step for testing dark matter properties,” he said.

Launched on Christmas Day in 2021, NASA’s JWST is an orbiting infrared observatory. Also called Webb, it is designed to answer questions about the universe. It is the largest, most complex, and powerful space telescope ever built.

“JWST provides an unprecedented opportunity for us to observe ancient galaxies formed when the universe was young,” Yu said. “We expect to see more surprises from JWST and learn more about dark matter soon.”

The Ancient Egyptian Personification Of The Milky Way As The Sky-Goddess Nut: An Astronomical And Cross-Cultural Analysis.

by Or Graur in Journal of Astronomical History and Heritage

Ancient Egyptians were known for their religious beliefs and astronomical knowledge of the Sun, Moon, and planets, but up until now it has been unclear what role the Milky Way played in Egyptian religion and culture.

A new study by a University of Portsmouth astrophysicist sheds light on the relationship between the Milky Way and the Egyptian sky-goddess Nut.

Nut is goddess of the sky, who is often depicted as a star-studded woman arched over her brother, the earth god Geb. She protects the earth from being flooded by the encroaching waters of the void, and plays a key role in the solar cycle, swallowing the Sun as it sets at dusk and giving birth to it once more as it rises at dawn. The paper draws on ancient Egyptian texts and simulations to argue that the Milky Way might have shone a spotlight, as it were, on Nut’s role as the sky. It proposes that in winter, the Milky Way highlighted Nut’s outstretched arms, while in summer, it traced her backbone across the heavens.

The sky goddess Nut, covered in stars, is held aloft by her father, Shu, and is arched over Geb, her brother the Earth god. On the left, the rising sun (the falcon-headed god Re) sails up Nut’s legs. On the right, the setting sun sails down her arms towards the outstretched arms of Osiris, who will regenerate the sun in the netherworld during the night. Credit: E. A. Wallis Budge, The Gods of the Egyptians, Vol. 2 (Methuen & Co., 1904).

Associate Professor in Astrophysics, Dr Or Graur, said: “I chanced upon the sky-goddess Nut when I was writing a book on galaxies and looking into the mythology of the Milky Way. I took my daughters to a museum and they were enchanted by this image of an arched woman and kept asking to hear stories about her.

“This sparked my interest and I decided to combine both astronomy and Egyptology to do a double analysis — astronomical and cross-cultural — of the sky-goddess Nut, and whether she really could be linked to the Milky Way.”

Dr Graur drew from a rich collection of ancient sources including the Pyramid Texts, Coffin Texts, and the Book of Nut and compared them alongside sophisticated simulations of the Egyptian night sky. He found compelling evidence that the Milky Way highlighted Nut’s divine presence. Furthermore, Dr Graur connected Egyptian beliefs with those of other cultures, showing similarities in how different societies interpret the Milky Way.

He said: “My study also shows that Nut’s role in the transition of the deceased to the afterlife and her connection to the annual bird migration are consistent with how other cultures understand the Milky Way. For example, as a spirits’ road among different peoples in North and Central America or as the Birds’ Path in Finland and the Baltics.

“My research shows how combining disciplines can offer new insights into ancient beliefs, and it highlights how astronomy connects humanity across cultures, geography, and time. This paper is an exciting start to a larger project to catalogue and study the multicultural mythology of the Milky Way.”

Linear to circular conversion in the polarized radio emission of a magnetar

by Marcus E. Lower, Simon Johnston, Maxim Lyutikov, Donald B. Melrose, Ryan M. Shannon, Patrick Weltevrede, Manisha Caleb, Fernando Camilo, Andrew D. Cameron, Shi Dai, George Hobbs, Di Li, Kaustubh M. Rajwade, John E. Reynolds, John M. Sarkissian, Benjamin W. Stappers in Nature Astronomy

Researchers using Murriyang, CSIRO’s Parkes radio telescope, have detected unusual radio pulses from a previously dormant star with a powerful magnetic field.

​New results describe radio signals from magnetar XTE J1810–197 behaving in complex ways. ​Magnetars are a type of neutron star and the strongest magnets in the Universe. At roughly 8,000 light years away, this magnetar is also the closest known to Earth. ​Most are known to emit polarised light, though the light this magnetar is emitting is circularly polarised, where the light appears to spiral as it moves through space. ​Dr Marcus Lower, a postdoctoral fellow at Australia’s national science agency — CSIRO, led the latest research and said the results are unexpected and totally unprecedented.

​”Unlike the radio signals we’ve seen from other magnetars, this one is emitting enormous amounts of rapidly changing circular polarisation. We had never seen anything like this before,” Dr Lower said.

​Dr Manisha Caleb from the University of Sydney and co-author on the study said studying magnetars offers insights into the physics of intense magnetic fields and the environments these create.

Evolution of the phase- and frequency-resolved polarization properties of XTE J1810−197.

​”The signals emitted from this magnetar imply that interactions at the surface of the star are more complex than previous theoretical explanations.”

​Detecting radio pulses from magnetars is already extremely rare: XTE J1810–197 is one of only a handful known to produce them. ​While it’s not certain why this magnetar is behaving so differently, the team has an idea.

​”Our results suggest there is a superheated plasma above the magnetar’s magnetic pole, which is acting like a polarising filter,” Dr Lower said. ​”How exactly the plasma is doing this is still to be determined.”

​XTE J1810–197 was first observed to emit radio signals in 2003. Then it went silent for well over a decade. The signals were again detected by the University of Manchester’s 76-m Lovell telescope at the Jodrell Bank Observatory in 2018 and quickly followed up by Murriyang, which has been crucial to observing the magnetar’s radio emissions ever since. ​The 64-m diameter telescope on Wiradjuri Country is equipped with a cutting edge ultra-wide bandwidth receiver. The receiver was designed by CSIRO engineers who are world leaders in developing technologies for radio astronomy applications.

​The receiver allows for more precise measurements of celestial objects, especially magnetars, as it is highly sensitive to changes in brightness and polarisation across a broad range of radio frequencies. ​Studies of magnetars such as these provide insights into a range of extreme and unusual phenomena, such as plasma dynamics, bursts of X-rays and gamma-rays, and potentially fast radio bursts.

A case for a binary black hole system revealed via quasi-periodic outflows

by Dheeraj R. Pasham, Francesco Tombesi, et al in Science Advances

At the heart of a far-off galaxy, a supermassive black hole appears to have had a case of the hiccups. Astronomers from MIT, Italy, the Czech Republic, and elsewhere have found that a previously quiet black hole, which sits at the center of a galaxy about 800 million light years away, has suddenly erupted, giving off plumes of gas every 8.5 days before settling back to its normal, quiet state.

The periodic hiccups are a new behavior that has not been observed in black holes until now. The scientists believe the most likely explanation for the outbursts stems from a second, smaller black hole that is zinging around the central, supermassive black hole and slinging material out from the larger black hole’s disk of gas every 8.5 days.

The team’s findings challenge the conventional picture of black hole accretion disks, which scientists had assumed are relatively uniform disks of gas that rotate around a central black hole. The new results suggest that accretion disks may be more varied in their contents, possibly containing other black holes, and even entire stars.

“We thought we knew a lot about black holes, but this is telling us there are a lot more things they can do,” says study author Dheeraj “DJ” Pasham, a research scientist in MIT’s Kavli Institute for Astrophysics and Space Research. “We think there will be many more systems like this, and we just need to take more data to find them.”

The study’s MIT co-authors include postdoc Peter Kosec, graduate student Megan Masterson, Associate Professor Erin Kara, Principal Research Scientist Ronald Remillard, and former research scientist Michael Fausnaugh, along with collaborators from multiple institutions, including the Tor Vergata University of Rome, the Astronomical Institute of the Czech Academy of Sciences, and Masaryk University in the Czech Republic.

ASASSN-20qc’s long-term evolution and a sample x-ray spectrum highlighting the outflow.

The team’s findings grew out of an automated detection by ASAS-SN (the All Sky Automated Survey for SuperNovae), a network of 20 robotic telescopes situated in various locations across the northern and southern hemispheres. The telescopes automatically survey the entire sky once a day for signs of supernovae and other transient phenomena.

In December of 2020, the survey spotted a burst of light in a galaxy about 800 million light years away. That particular part of the sky had been relatively quiet and dark until the telescopes’ detection, when the galaxy suddenly brightened by a factor of 1,000. Pasham, who happened to see the detection reported in a community alert, chose to focus in on the flare with NASA’s NICER (the Neutron star Interior Composition Explorer), an X-ray telescope aboard the International Space Station that continuously monitors the sky for X-ray bursts that could signal activity from neutron stars, black holes, and other extreme gravitational phenomena. The timing was fortuitous, as it was getting toward the end of Pasham’s year-long period during which he had permission to point, or “trigger” the telescope.

“It was either use it or lose it, and it turned out to be my luckiest break,” he says.

He trained NICER to observe the far-off galaxy as it continued to flare. The outburst lasted for about four months before petering out. During that time, NICER took measurements of the galaxy’s X-ray emissions on a daily, high-cadence basis. When Pasham looked closely at the data, he noticed a curious pattern within the four-month flare: subtle dips, in a very narrow band of X-rays, that seemed to reappear every 8.5 days.

It seemed that the galaxy’s burst of energy periodically dipped every 8.5 days. The signal is similar to what astronomers see when an orbiting planet crosses in front of its host star, briefly blocking the star’s light. But no star would be able to block a flare from an entire galaxy.

“I was scratching my head as to what this means because this pattern doesn’t fit anything that we know about these systems,” Pasham recalls.

As he was looking for an explanation to the periodic dips, Pasham came across a recent paper by theoretical physicists in the Czech Republic. The theorists had separately worked out that it would be possible, in theory, for a galaxy’s central supermassive black hole to host a second, much smaller black hole. That smaller black hole could orbit at an angle from its larger companion’s accretion disk.

As the theorists proposed, the secondary would periodically punch through the primary black hole’s disk as it orbits. In the process, it would release a plume of gas , like a bee flying through a cloud of pollen. Powerful magnetic fields, to the north and south of the black hole, could then slingshot the plume up and out of the disk. Each time the smaller black hole punches through the disk, it would eject another plume, in a regular, periodic pattern. If that plume happened to point in the direction of an observing telescope, it might observe the plume as a dip in the galaxy’s overall energy, briefly blocking the disk’s light every so often.

“I was super excited by this theory, and I immediately emailed them to say, ‘I think we’re observing exactly what your theory predicted,’” Pasham says.

He and the Czech scientists teamed up to test the idea, with simulations that incorporated NICER’s observations of the original outburst, and the regular, 8.5-day dips. What they found supports the theory: The observed outburst was likely a signal of a second, smaller black hole, orbiting a central supermassive black hole, and periodically puncturing its disk.

Specifically, the team found that the galaxy was relatively quiet prior to the December 2020 detection. The team estimates the galaxy’s central supermassive black hole is as massive as 50 million suns. Prior to the outburst, the black hole may have had a faint, diffuse accretion disk rotating around it, as a second, smaller black hole, measuring 100 to 10,000 solar masses, was orbiting in relative obscurity.

The researchers suspect that, in December 2020, a third object — likely a nearby star — swung too close to the system and was shredded to pieces by the supermassive black hole’s immense gravity — an event that astronomers know as a “tidal disruption event.” The sudden influx of stellar material momentarily brightened the black hole’s accretion disk as the star’s debris swirled into the black hole. Over four months, the black hole feasted on the stellar debris as the second black hole continued orbiting. As it punched through the disk, it ejected a much larger plume than it normally would, which happened to eject straight out toward NICER’s scope.

The team carried out numerous simulations to test the periodic dips. The most likely explanation, they conclude, is a new kind of David-and-Goliath system — a tiny, intermediate-mass black hole, zipping around a supermassive black hole.

How to identify cell material in a single ice grain emitted from Enceladus or Europa

by Fabian Klenner, Janine Bönigk, Maryse Napoleoni, Jon Hillier, Nozair Khawaja, Karen Olsson-Francis, Morgan L. Cable, Michael J. Malaska, Sascha Kempf, Bernd Abel, Frank Postberg in Science Advances

The ice-encrusted oceans of some of the moons orbiting Saturn and Jupiter are leading candidates in the search for extraterrestrial life. A new lab-based study led by the University of Washington in Seattle and the Freie Universität Berlin shows that individual ice grains ejected from these planetary bodies may contain enough material for instruments headed there in the fall to detect signs of life, if such life exists.

“For the first time we have shown that even a tiny fraction of cellular material could be identified by a mass spectrometer onboard a spacecraft,” said lead author Fabian Klenner, a UW postdoctoral researcher in Earth and space sciences. “Our results give us more confidence that using upcoming instruments, we will be able to detect lifeforms similar to those on Earth, which we increasingly believe could be present on ocean-bearing moons.” Other authors in the international team are from The Open University in the U.K.; NASA’s Jet Propulsion Laboratory; the University of Colorado, Boulder; and the University of Leipzig.

The Cassini mission that ended in 2017 discovered parallel cracks near the south pole of Saturn’s moon Enceladus. Emanating from these cracks are plumes containing gas and ice grains. NASA’s Europa Clipper mission, scheduled to launch in October, will carry more instruments to explore in even more detail an icy moon of Jupiter, Europa.

Baseline corrected cationic mass spectrum of the cell material equivalent to one S. alaskensis cell in a 15-μm-diameter H2O droplet.

To prepare for that mission, researchers are studying what this new generation of instruments might find. It is technically prohibitive to directly simulate grains of ice flying through space at 4 to 6 kilometers per second to hit an observational instrument, as the actual collision speed will be. Instead, the authors used an experimental setup that sends a thin beam of liquid water into a vacuum, where it disintegrates into droplets. They then used a laser beam to excite the droplets and mass spectral analysis to mimic what instruments on the space probe will detect.

Results show that instruments slated to go on future missions, like the SUrface Dust Analyzer onboard Europa Clipper, can detect cellular material in one out of hundreds of thousands of ice grains.

The study focused on Sphingopyxis alaskensis, a common bacterium in waters off Alaska. While many studies use the bacterium Escherichia coli as a model organism, this single-celled organism is much smaller, lives in cold environments, and can survive with few nutrients. All these things make it a better candidate for potential life on the icy moons of Saturn or Jupiter.

“They are extremely small, so they are in theory capable of fitting into ice grains that are emitted from an ocean world like Enceladus or Europa,” Klenner said.

Results show that the instruments can detect this bacterium, or portions of it, in a single ice grain. Different molecules end up in different ice grains. The new research shows that analyzing single ice grains, where biomaterial may be concentrated, is more successful than averaging across a larger sample containing billions of individual grains.

A recent study led by the same researchers showed evidence of phosphate on Enceladus. This planetary body now appears to contain energy, water, phosphate, other salts and carbon-based organic material, making it increasingly likely to support lifeforms similar to those found on Earth.

The authors hypothesize that if bacterial cells are encased in a lipid membrane, like those on Earth, then they would also form a skin on the ocean’s surface. On Earth, ocean scum is a key part of sea spray that contributes to the smell of the ocean. On an icy moon where the ocean is connected to the surface (e.g., through cracks in the ice shell), the vacuum of outer space would cause this subsurface ocean to boil. Gas bubbles rise through the ocean and burst at the surface, where cellular material gets incorporated into ice grains within the plume.

“We here describe a plausible scenario for how bacterial cells can, in theory, be incorporated into icy material that is formed from liquid water on Enceladus or Europa and then gets emitted into space,” Klenner said.

The SUrface Dust Analyzer onboard Europa Clipper will be higher-powered than instruments on past missions. This and future instruments also will for the first time be able to detect ions with negative charges, making them better suited to detecting fatty acids and lipids.

“For me, it is even more exciting to look for lipids, or for fatty acids, than to look for building blocks of DNA, and the reason is because fatty acids appear to be more stable,” Klenner said.

“With suitable instrumentation, such as the SUrface Dust Analyzer on NASA’s Europa Clipper space probe, it might be easier than we thought to find life, or traces of it, on icy moons,” said senior author Frank Postberg, a professor of planetary sciences at the Freie Universität Berlin. “If life is present there, of course, and cares to be enclosed in ice grains originating from an environment such as a subsurface water reservoir.”

First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring

by Kazunori Akiyama et al. in The Astrophysical Journal Letters

A new image from the Event Horizon Telescope (EHT) collaboration — which includes scientists from the Center for Astrophysics | Harvard & Smithsonian (CfA) — has uncovered strong and organized magnetic fields spiraling from the edge of the supermassive black hole Sagittarius A* (Sgr A*). Seen in polarized light for the first time, this new view of the monster lurking at the heart of the Milky Way Galaxy has revealed a magnetic field structure strikingly similar to that of the black hole at the center of the M87 galaxy, suggesting that strong magnetic fields may be common to all black holes. This similarity also hints toward a hidden jet in Sgr A*.

Scientists unveiled the first image of Sgr A* — which is approximately 27,000 light-years away from Earth — in 2022, revealing that while the Milky Way’s supermassive black hole is more than a thousand times smaller and less massive than M87’s, it looks remarkably similar. This made scientists wonder whether the two shared common traits outside of their looks. To find out, the team decided to study Sgr A* in polarized light. Previous studies of light around M87* revealed that the magnetic fields around the black hole giant allowed it to launch powerful jets of material back into the surrounding environment. Building on this work, the new images have revealed that the same may be true for Sgr A*.

“What we’re seeing now is that there are strong, twisted, and organized magnetic fields near the black hole at the center of the Milky Way galaxy,” said Sara Issaoun, CfA NASA Hubble Fellowship Program Einstein Fellow, Smithsonian Astrophysical Observatory (SAO) astrophysicist, and co-lead of the project. “Along with Sgr A* having a strikingly similar polarization structure to that seen in the much larger and more powerful M87* black hole, we’ve learned that strong and ordered magnetic fields are critical to how black holes interact with the gas and matter around them.”

Light is an oscillating, or moving, electromagnetic wave that allows us to see objects. Sometimes, light oscillates in a preferred orientation, and we call it “polarized.” Although polarized light surrounds us, to human eyes it is indistinguishable from “normal” light. In the plasma around these black holes, particles whirling around magnetic field lines impart a polarization pattern perpendicular to the field. This allows astronomers to see in increasingly vivid detail what’s happening in black hole regions and map their magnetic field lines.

“By imaging polarized light from hot glowing gas near black holes, we are directly inferring the structure and strength of the magnetic fields that thread the flow of gas and matter that the black hole feeds on and ejects,” said Harvard Black Hole Initiative Fellow and project co-lead Angelo Ricarte. “Polarized light teaches us a lot more about the astrophysics, the properties of the gas, and mechanisms that take place as a black hole feeds.”

But imaging black holes in polarized light isn’t as easy as putting on a pair of polarized sunglasses, and this is particularly true of Sgr A*, which is changing so fast that it doesn’t sit still for pictures. Imaging the supermassive black hole requires sophisticated tools above and beyond those previously used for capturing M87*, a much steadier target. CfA postdoctoral fellow and SAO astrophysicist Paul Tiede said, “It is exciting that we were able to make a polarized image of Sgr A* at all. The first image took months of extensive analysis to understand its dynamical nature and unveil its average structure. Making a polarized image adds on the challenge of the dynamics of the magnetic fields around the black hole. Our models often predicted highly turbulent magnetic fields, making it extremely difficult to construct a polarized image. Fortunately, our black hole is much calmer, making the first image possible.”

The (u, v) coverage for the April 6 (left) and April 7 (right) EHT observations of Sgr A* during the 2017 campaign. The color of the data points encodes the fractional polarization amplitude in the range from 0 to 2, and the tick direction encodes the measured polarization direction.

Scientists are excited to have images of both supermassive black holes in polarized light because these images, and the data that come with them, provide new ways to compare and contrast black holes of different sizes and masses. As technology improves, the images are likely to reveal even more secrets of black holes and their similarities or differences.

Michi Bauböck, postdoctoral researcher at the University of Illinois Urbana-Champaign, said, “M87* and Sgr A* are different in a few important ways: M87* is much bigger, and it’s pulling in matter from its surroundings at a much faster rate. So, we might have expected that the magnetic fields also look very different. But in this case, they turned out to be quite similar, which may mean that this structure is common to all black holes. A better understanding of the magnetic fields near black holes helps us answer several open questions — from how jets are formed and launched to what powers the bright flares we see in infrared and X-ray light.”

The EHT has conducted several observations since 2017 and is scheduled to observe Sgr A* again in April 2024. Each year, the images improve as the EHT incorporates new telescopes, larger bandwidth, and new observing frequencies. Planned expansions for the next decade will enable high-fidelity movies of Sgr A*, may reveal a hidden jet, and could allow astronomers to observe similar polarization features in other black holes. Meanwhile, extending the EHT into space will provide sharper images of black holes than ever before.

The CfA is leading several major initiatives to sharply enhance the EHT over the next decade. The next-generation EHT (ngEHT) project is undertaking a transformative upgrade of the EHT, aiming to bring multiple new radio dishes online, enable simultaneous multi-color observations, and increase the overall sensitivity of the array. The ngEHT expansion will enable the array to make real-time movies of supermassive black holes on event horizon scales. These movies will resolve detailed structure and dynamics near the event horizon, bringing into focus “strong-field” gravity features predicted by General Relativity as well as the interplay of accretion and relativistic jet-launching that sculpts large-scale structures in the Universe. Meanwhile, the Black Hole Explorer (BHEX) mission concept will extend the EHT into space, producing the sharpest images in the history of astronomy. BHEX will enable the detection and imaging of the “photon ring” — a sharp ring feature formed by strongly lensed emission around black holes. The properties of a black hole are imprinted on the size and shape of the photon ring, revealing masses and spins for dozens of black holes, in turn showing how these strange objects grow and interact with their host galaxies.

Upcoming Events

May 5 GEOINT 2024 Symposium: Essential in all Dimensions and Domains

May 15 COSMIC Convergence

Subscribe to Paradigm!

Medium. Twitter. Telegram. Telegram Chat. Reddit. LinkedIn.

Main sources

Research articles

Nature Astronomy

The Astrophysical Journal

Science Daily

Space News

--

--